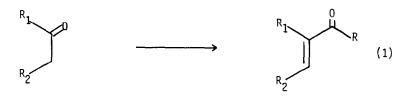
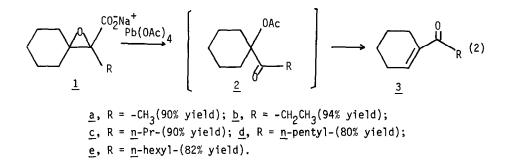
Tetrahedron Letters No. 15, pp 1321 - 1322. © Pergamon Press Lta. 1979. Printed in Great Britain.

DECARBOXYLATIVE ELIMINATION:


A NEW METHOD FOR THE SYNTHESIS OF $\alpha,\beta\text{--UNSATURATED}$ KETONES

Vichai Reutrakul^A, Surachai Nimgirawath^B, Sirichai Panichanun^A and Yupayao Srikirin^A ^ADepartment of Chemistry, Faculty of Science, Mahidol University Rama VI Road, Bangkok 4, Thailand


^BDepartment of Chemistry, Faculty of Science, Silapakorn University, Nakorn Pathom, Thailand

An efficient one-pot synthesis of α,β -unsaturated ketones via the decarboxylative elimination of sodium glycidates with lead tetraacetate is described.

The transformation of a carboxylic acid (or derivative) to ketone with a loss of one carbon atom has been a subject of considerable interest¹. We wish to report a novel decarboxylation reaction which is highly convenient for the synthesis of α , β -unsaturated ketones² from the corresponding carbonyl compounds (equation 1).

The process involves the decarboxylation of sodium glycidate³ $\underline{1}$ with lead tetraacetate, followed by the pyrolytic elimination⁴ of the α -acetoxyketone intermediate $\underline{2}$ as indicated in equation (2).

The following procedure is representative: a mixture of sodium glycidate <u>le</u> (0.01 mole), pyridine (0.02 mole), lead tetraacetate (0.02 mole) and dry benzene (100 ml) was stirred under nitrogen for 0.5 hr at room temperature, before being refluxed for 5 hr. Excess lead tetraacetate was decomposed with ethylene glycol. The product was purified by preparative thick layer chromatography (Merck PF_{254} silica gel; 7:3 chloroform-light petroleum; $R_f = 0.6$) to give <u>3e</u> in 82% yield.

The overall process represented by equation (1) involves the introduction of both an acyl and a double bond at the original carbon. The C-2 atom of the α -haloester functions as a masked nucleophilic acyl carbon⁴.

$$R-CH \begin{pmatrix} CO_2R_3 & 0\\ 1\\ \chi & \equiv R-C \end{pmatrix}$$

We are presently exploring the scope and limitation of this reaction.

REFERENCES

- 1. B.M. Trost, Chem. Rev., 78, 363 (1978).
- For recent reports see: I. Fleming and A. Pearce, <u>J.C.S. Chem. Comm.</u>, 633 (1975);
 M. Montury and J. Gore, <u>Tetrahedron Lett.</u>, 219 (1977);
 M. Charpentier-Morize and J. Sansoulet, <u>Bull. Soc. Chim. Fr.</u>, 331 (1977).
- All sodium glycidate salts were 'prepared by known procedures: W.S. Johnson, J.S. Belew, L.J. Chinn and R.H. Hunt, <u>J. Amer. Chem. Soc.</u>, <u>75</u>, 4995 (1953); J.A. Waters and B. Witkop, J. Org. Chem., <u>36</u>, 3232 (1971).
- 4. For pyrolysis of glycidic esters see: E.P. Blanchard Jr. and G. Büchi, <u>J. Amer. Chem. Soc</u>.
 <u>85</u>, 955 (1963).
- O.W. Lever, Jr., <u>Tetrahedron</u>, <u>32</u>, 1943 (1976); G. Stork, A.Y.W. Leong and A.M. Touzin, <u>J. Org. Chem.</u>, <u>41</u>, 3491 (1976); R. Lohmar and W. Steglich, <u>Angew. Chem. Int. Ed. Engl.</u>, 17, 450 (1978).